Useful Formulae
Ordinary Objects
An ordinary object is any object that does not fall withing any of the other categories described below.
Let the 3D vectors \(p_d\) and \(p_s\) represent the object’s position and the warp’s origin, respectively; and \(\vec{v}\) the directional vector from \(p_s\) to \(p_d\). Let \(r\) be the object’s radius.
The object’s warp-in point is the vector \(p_s + \vec{v} - r\hat{v}\).
Large Objects
A large object is any celestial body whose radius exceeds 90 kilometres (180 kilometres in diameter), except planets.
Let \(x\), \(y\), and \(z\) represent the object’s coordinates. Let \(r\) be the object’s radius.
The object’s warp-in point is the vector \(\left(x + (r + 5000000)\cos{r} \\, y + 1.3r - 7500 \\, z - (r + 5000000)\sin{r} \\ \right).\)
Planets
The warp-in point of a planet is determined by the planet's ID, its location, and radius.
Let \(x\), \(y\), and \(z\) represent the planet's coordinates. Let \(r\) be the planet's radius.
The planet's warp-in point is the vector \(\left(x + d \sin{\theta}, y + \frac{1}{2} r \sin{j}, z - d \cos{\theta}\right)\) where:
Now, \(j\) is a special snowflake. Its value is the Python equivalent of (random.Random(planetID).random() - 1.0) / 3.0
.
Example
import math
import random
def warpin(id, x, y, z, r):
j = (random.Random(id).random() - 1.0) / 3.0
t = math.asin(x / abs(x) * (z / math.sqrt(x**2 + z**2))) + j
s = 20.0 * (1.0 / 40.0 * (10 * math.log10(r / 10**6) - 39)) ** 20.0 + 1.0 / 2.0
s = max(0.5, min(s, 10.5))
d = r * (s + 1) + 1000000
return (x + d * math.sin(t), y + 1.0 / 2.0 * r * math.sin(j), z - d * math.cos(t))
Skillpoints needed per level
The skillpoints needed for a level depend on the skill rank.
\(y_{skillpoints} = 2^{2.5(x_{skilllevel}-1)} \cdot 250 \cdot r_{skillrank}\)
Skillpoints for common ranks
Rank | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
1 | 250 | 1.414 | 8000 | 45,254 | 256,000 |
2 | 500 | 2,828 | 16,000 | 90,509 | 512,000 |
3 | 750 | 4,242 | 24,000 | 135,764 | 768,000 |
4 | 1000 | 5,656 | 32,000 | 181,019 | 1,024,000 |
5 | 1250 | 7,071 | 40,000 | 226,274 | 1,280,000 |
6 | 1500 | 8,485 | 48,000 | 271,529 | 1,536,000 |
7 | 1750 | 9,899 | 56,000 | 316,784 | 1,792,000 |
8 | 2000 | 11,313 | 64,000 | 362,039 | 2,048,000 |
9 | 2250 | 12,727 | 72,000 | 407,293 | 2,304,000 |
10 | 2500 | 14,142 | 80,000 | 452,548 | 2,560,000 |
11 | 2750 | 15,556 | 88,000 | 497,803 | 2,816,000 |
12 | 3000 | 16,970 | 96,000 | 543,058 | 3,072,000 |
13 | 3250 | 18,384 | 104,000 | 588,312 | 3,328,000 |
14 | 3500 | 19,798 | 112,000 | 633,567 | 3,584,000 |
15 | 3750 | 21,213 | 120,000 | 678,822 | 3,840,000 |
16 | 4000 | 22,627 | 128,000 | 724,077 | 4,096,000 |
Skillpoints per minute
The skillpoints generated each minute depend on the primary \((a_{primary})\) and secondary attribute \((a_{secondary})\) of the skill.
Target lock time
The target lock time (\(t_{targetlock}\)) in seconds depends on the ship's scan resolution (\(s\)) and the target's signature radius (\(r\))
Alignment time
The ship alignment time (\(t_{align}\)) depends on the ship's inertia modifier (\(i\)) and the ships mass (\(m\))